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(57) ABSTRACT

Disclosed is an orientation state estimation device capable of
estimating with high accuracy the orientation state of a
jointed body. An orientation state estimation device (100)
estimates the orientation state of a body on the basis of image
data of the body having multiple parts connected by joints.
The device is provided with: a likelihood map generation unit
(150) which, from the image data, for at least two parts of the
jointed body, generates a likelihood map showing the plausi-
bility distribution of where each part is most plausibly posi-
tioned; and an orientation state estimation unit (160) which,
when a learning likelihood map, which is associated in
advance with an orientation state, and an estimated likelihood
map, which is generated on the basis of the image data,
coincide to a high degree, estimates that the orientation state
associated with said learning likelihood map is the orientation
state of the object.
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1
ORIENTATION STATE ESTIMATION DEVICE
AND ORIENTATION STATE ESTIMATION
METHOD

TECHNICAL FIELD

The present invention relates to a posture state estimation
apparatus and a posture state estimation method that estimate
the posture state of an object including a plurality of parts
articulated by joints on the basis of image data obtained by
capturing the object.

BACKGROUND ART

Human posture estimation based on image data from a
captured video sequence has been an active area of research in
recent years. This is because being able to determine human
behavior based on videos through computer analysis would
make behavior analysis, which is performed in various fields,
possible without requiring human effort. Examples of behav-
ior analysis include abnormal behavior detection on the
streets, purchasing behavior analysis in stores, factory
streamlining support, and form coaching in sports.

In this respect, NPL 1, for example, discloses a technique
for estimating the posture state of a person based on image
data captured with a monocular camera. In the technique
disclosed in NPL 1 (hereinafter referred to as “related art™),
the silhouette (outline) of a person is detected from image
data, and a shape context histogram that is one of shape
features is extracted from the detected silhouette. In the
related art, a classifier is formed for each posture of an opera-
tion to be classified, with a variance-covariance matrix of the
extracted histogram being as input. With this configuration,
the related art can estimate the posture state of the person
regardless of the position and orientation of the person.

CITATION LIST
Non-Patent Literature

NPL 1

Masamichi Shimosaka, Makoto Sato, Taketoshi Mori, and
Tomomasa Sato, “Motion Recognition Using Shape Fea-
tures in Monocular Images,” in the collection of presenta-
tion papers from the 70” National Convention in 2008 (5),
Information Processing Society of Japan, Mar. 13, 2008, p.
5-93, p. 5-94

NPL 2

P. Viola and M. Jones, “Rapid Object Detection Using a
Boosted Cascade of Simple Features.” in Proc. of CVPR,
vol. 1, December, 2001, ppp. 511-518

SUMMARY OF INVENTION
Technical Problem

However, the related art cannot distinguish between a plu-
rality of posture states having similar silhouettes, and thus has
a problem in that the posture states of persons cannot be
estimated accurately. By way of example, let us suppose a
case where both arms of a person are covered by the outline of
his/her torso as viewed from a camera. In this case, according
to the related art, if the entire outline including the outlines of
his/her head and legs is the same, the same posture state is
obtained as the estimation result, regardless of whether the
arms are bent or stretched and whether the arms are located in
front or in back.
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2

While the posture states of various objects, besides
humans, having a plurality of parts articulated by joints (e.g.,
robots) could be estimated using the related art, similar prob-
lems could still arise in such cases.

An object of the present invention is to provide a posture
state estimation apparatus and a posture state estimation
method capable of accurately estimating the posture state of
an object having joints.

Solution to Problem

A posture state estimation apparatus according to an aspect
of'the present invention estimates a posture state of an object
including a plurality of parts articulated by joints on a basis of
image data obtained by capturing the object, the apparatus
including: a likelihood map generation section that generates,
for at least two of the parts, a likelihood map indicating a
distribution of likelihood that each part is located, from the
image data; and a posture state estimation section that esti-
mates, if a level of match between a learned likelihood map
and an estimated likelihood map is high, the posture state
associated with the learned likelihood map, as the posture
state of the object, the learned likelihood map being the
likelihood map associated in advance with the posture state,
the estimated likelihood map being the likelihood map gen-
erated on the basis of the image data.

A posture state estimation method according to an aspect
of'the present invention estimates a posture state of an object
including a plurality of parts articulated by joints on a basis of
image data obtained by capturing the object, the method
including: generating, for at least two of the parts, a likelihood
map indicating a distribution of likelihood that each part is
located, from the image data; determining a level of match
between a learned likelihood map that is the likelihood map
associated in advance with the posture state and an estimated
likelihood map that is the likelihood map generated on the
basis of the image data; and estimating, if the level of match
is high, the posture state associated with the learned likeli-
hood map as the posture state of the object.

Advantageous Effects of Invention

With the present invention, the posture state of an object
having joints can be estimated accurately.

BRIEF DESCRIPTION OF DRAWINGS

FIG.1is a block diagram showing a configuration example
of'a posture state estimation apparatus according to Embodi-
ment 1 of the present invention;

FIG. 2 is a diagram illustrating image data in Embodiment
1;

FIG. 3 is a flowchart showing an operation example of the
posture state estimation apparatus according to Embodiment
1;

FIG. 4 is a flowchart showing an example of an estimation
phase process according to Embodiment 1;

FIG. 5 is diagram illustrating an omega shape in Embodi-
ment 1;

FIG. 6 is a diagram illustrating perpendicular distances
from a reference line to an omega shape with in Embodiment
1;

FIG. 7 is a diagram showing an example of a distance
histogram in Embodiment 1;

FIG. 8 is a diagram showing an example of a distance
histogram after thresholding in Embodiment 1;
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FIG. 9 is a diagram illustrating various parameters indicat-
ing reference parts in Embodiment 1;

FIG. 10 is a diagram showing example contents of a refer-
ence part correspondence table in Embodiment 1;

FIG. 11 is a diagram showing example contents of a part
region correspondence table in Embodiment 1;

FIG. 12 is a diagram showing example contents of part
region data in Embodiment 1;

FIG. 13 is a diagram showing an example of an estimated
likelihood map in Embodiment 1;

FIG. 14 is a diagram showing an example of an estimated
likelihood map after thresholding in Embodiment 1;

FIGS. 15A and 15B each show an example of the case
where it is determined to be the designated posture according
to Embodiment 1;

FIGS. 16A to 16F each show another example of the case
where it is determined to be the designated posture according
to Embodiment 1;

FIG. 17 is a block diagram showing a configuration
example of a posture state estimation apparatus according to
Embodiment 2 of the present invention;

FIG. 18 is a flowchart showing an operation example of the
posture state estimation apparatus according to Embodiment
2;

FIG. 19 is a flowchart showing an example of a learning
phase process according to Embodiment 2;

FIG. 20 is ablock diagram showing a main configuration of
a posture state estimation apparatus according to Embodi-
ment 3 of the present invention;

FIGS. 21A to 21E illustrate the relation between the pos-
ture of a person and the brightness of each part according to
Embodiment 3;

FIG. 22 shows a processing flow example of the posture
state estimation apparatus according to Embodiment 3;

FIG. 23 shows a processing flow example of an irregularity
map generation process according to Embodiment 3; and

FIG. 24 illustrates a method for area classification accord-
ing to Embodiment 3.

DESCRIPTION OF EMBODIMENTS

Embodiments of the present invention will be described in
detail below with reference to the drawings.

Embodiment 1

Embodiment 1 of the present invention is an example in
which the present invention is applied to an apparatus that
estimates whether or not the posture state of a captured person
matches with a posture state designated by a user.

In the description below, the term “part” refers to one unit
among portions of the human anatomy divided by joints. In
other words, the term part may refer to, for example, the head,
the shoulders, the right upper arm, the right forearm, the left
upper arm, the left forearm, the right thigh, the right crus, the
left thigh, or the left crus. Further, the term “part region”
refers to aregion that could be occupied by a given part within
an image, i.e., the range of motion of a part.

The term “posture state” as the estimation target refers to
the postures of two or more parts to be focused on (hereinafter
referred to as “parts of interest”). “Posture” in this context
may be represented by such information as the position of a
joint that articulates the parts of interest in a two-dimensional
coordinate system or three-dimensional coordinate system,
the lengths of the parts concerned, the angle formed between
the parts, and the like. Accordingly, the term “posture state
estimation” involves estimating a posture state by estimating
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such information. The positions, lengths, and angles men-
tioned above may be expressed through relative values that
reference a predetermined human body part, or through abso-
lute values in a two-dimensional coordinate system or three-
dimensional coordinate system.

Although descriptions are provided using pixels as basic
units for the present embodiments, similar processes may also
be performed by treating a group of pixels equivalent to a
predetermined size as one pixel. This would enable carrying
out high-speed processing. When treating a plurality of pixels
as one pixel, the value of the pixel that is the geometric center
of the plurality of pixels may be used as the value of the
plurality of pixels, or the average value of the values of the
plurality of pixels may be used as the value of the plurality of
pixels.

FIG.1is a block diagram showing a configuration example
of'a posture state estimation apparatus according to Embodi-
ment 1 of the present invention. For ease of description,
peripheral devices of the posture state estimation apparatus
are also shown in the drawing.

In FIG. 1, posture state estimation apparatus 100 includes
posture state management section 110, posture state designa-
tion section 120, image data acquisition section 130, part
region estimation section 140, likelihood map generation sec-
tion 150, and posture state estimation section 160.

Posture state management section 110 stores in advance,
for each posture state, identification information of the pos-
ture state, identification information of two or more parts of
interest designated to the posture state, and a likelihood map
in association with one another. The likelihood map indicates
a distribution of the likelihood that each part of interest is
located in an image, and details thereof will be described later.
Only the posture states whose information is stored in posture
state management section 110 are hereinafter referred to as
“posture states.” The likelihood map that is stored in advance
in posture state management section 110 in association with a
posture state is hereinafter referred to as “learned likelihood
map.”

Posture state designation section 120 receives the designa-
tion of a posture state as the estimation target from a user
through an input apparatus (not shown) such as a keyboard.
Specifically, posture state designation section 120 creates, for
example, a list of posture states with reference to posture state
management section 110, then displays the created list as
options, and thereby receives the designation of a posture
state. Posture state designation section 120 receives, for
example, the designation of a posture state where “the right
arm is bent.” Then, posture state designation section 120
outputs identification information of the designated posture
state to part region estimation section 140 and posture state
management section 110. The designated posture state and
identification information of the designated posture are here-
inafter collectively referred to as “designated posture.”

Posture state designation section 120 outputs the two or
more parts of interest associated with the designated posture
to part region estimation section 140. For example, with
respect to the posture state where “the right arm is bent,”
posture state designation section 120 outputs the “right upper
arm” and the “right forearm.” The parts of interest associated
with the designated posture are hereinafter referred to as
“designated parts.”

Image data acquisition section 130 obtains, by wire or
wirelessly, image data of an image captured by monocular
camera 200 installed in a predetermined three-dimensional
coordinate space, and outputs the image data to part region
estimation section 140. In the following description, it is
assumed that the image data contains images of one person
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only. However, this is by no means limiting, and it may
contain images of a plurality of people, or of none at all.

FIG. 2 is a diagram illustrating image data.

Three-dimensional coordinate system 410 is set up as
shown in FIG. 2, where the position of monocular camera 200
as projected onto the ground is taken to be origin O, for
example. Coordinate system 410 takes the perpendicular
direction to be the Y-axis, a direction orthogonal to the Y-axis
and optical axis 411 of monocular camera 200 to be the
X-axis, and a direction orthogonal to the X-axis and the Y-axis
to be the Z-axis, for example.

The installation angle of monocular camera 200 is denoted
by angle 8 formed between the Y-axis and optical axis 411, for
example. Monocular camera 200 performs imaging by focus-
ing on plane 412 contained in the range within view angle ¢ of
monocular camera 200. Image data of the image thus cap-
tured is sent to posture state estimation apparatus 100. The
image data as the estimation target of the posture state is
hereinafter referred to as “estimated image data.”

Part region estimation section 140 in FIG. 1 estimates the
part region of each designated part received from posture
state designation section 120, on the basis of the estimated
image data received from image data acquisition section 130.
Specifically, part region estimation section 140 estimates the
positions and orientations of reference parts of a person, from
the estimated image data. Then, with the estimated positions
and orientations of the reference parts as the references, part
region estimation section 140 estimates the part region of
each designated part.

For the present embodiment, it is assumed that the refer-
ence parts include the head and shoulders of a person. It is
assumed that the orientation of the reference parts is the
orientation of the shoulders, where the orientation of the
shoulders is defined as the direction of a straight line connect-
ing the right shoulder and the left shoulder. Then, part region
estimation section 140 outputs the estimated image data, the
designated posture, and information indicating the part region
of'each designated part (hereinafter referred to as “part region
data”) to likelihood map generation section 150.

Likelihood map generation section 150 generates a likeli-
hood map from the estimated image data received from part
region estimation section 140. At this time, likelihood map
generation section 150 generates a likelihood map where, for
regions other than the part regions indicated by the part region
data received from part region estimation section 140, the
likelihood that designated parts corresponding to those part
regions are located thereat is set low. The likelihood map thus
generated contains such information that only the likelihood
of the ranges of motion of the parts of interest in the desig-
nated posture (for example, the “right upper arm” and the
“right forearm” in the case of the posture state where “the
right arm is bent”) is high. Then, likelihood map generation
section 150 outputs the generated likelihood map to posture
state estimation section 160 together with the designated
posture received from part region estimation section 140. The
likelihood map generated on the basis of the estimated image
data is hereinafter referred to as “estimated likelihood map.”

Posture state estimation section 160 acquires a learned
likelihood map associated with the designated posture
received from likelihood map generation section 150, from
posture state management section 110. Note that posture state
management section 110 may output the learned likelihood
map to posture state estimation section 160 upon reception of
an instruction from posture state estimation section 160.
Then, if the level of match between the acquired learned
likelihood map and the estimated likelihood map received
from likelihood map generation section 150 is high, posture

25

40

45

50

55

6

state estimation section 160 estimates the designated posture
as the posture state of the person in the estimated image data.
That is, posture state estimation section 160 estimates that the
person captured by monocular camera 200 is in the posture
state designated by the user. Posture state estimation section
160 sends, by wire or wirelessly, information to information
output apparatus 300 (e.g., a display apparatus), thus notify-
ing the user of the estimation result.

Posture state estimation apparatus 100 may be a computer
including a central processing unit (CPU), a storage medium
(e.g., random-access memory (RAM)), and/or the like. In
other words, posture state estimation apparatus 100 operates
by having the CPU execute a stored control program.

Because posture state estimation apparatus 100 described
above uses a likelihood map representing a distribution of
likelihoods for each part, even if, for example, the right arm is
covered by the outline of the torso in the image, it is possible
to determine whether or not the posture state is “right arm is
bent” That is, posture state estimation apparatus 100 can
estimate the posture states of persons more accurately than
the related art.

Posture state estimation apparatus 100 estimates a part
region, which is a region where a specified part is movable,
and sets low likelihood values for regions other than the part
region, thus improving the accuracy of the likelihood map.

The operation of posture state estimation apparatus 100
will be described.

FIG. 3 is a flowchart showing an operation example of
posture state estimation apparatus 100.

First, in step S3000, part region estimation section 140
determines whether or not an instruction for posture state
estimation has been given. Part region estimation section 140
determines that an instruction for posture state estimation has
been given, for example, when posture state designation sec-
tion 120 receives the designation of a new posture state or
when image data acquisition section 130 receives new esti-
mated image data. If an instruction for posture state estima-
tion has been given (S3000: YES), part region estimation
section 140 proceeds to step S4000. If an instruction for
posture state estimation has not been given (S3000: NO), part
region estimation section 140 proceeds to step S5000.

In step S4000, posture state estimation apparatus 100 per-
forms an estimation phase process for posture state estima-
tion, and proceeds to step S5000. Details of the estimation
phase process will be described hereinafter.

In step S5000, part region estimation section 140 deter-
mines whether or not an instruction for processing end has
been given through a user operation or the like. If an instruc-
tion for processing end has not been given (S5000: NO), part
region estimation section 140 returns to step S3000, and
continues to stand by for an instruction for posture state
estimation. Ifan instruction for processing end has been given
(S5000: YES), part region estimation section 140 ends this
process.

FIG. 4 is a flowchart showing an example of the estimation
phase process (step S4000 in FIG. 3).

In step S4100, posture state designation section 120
receives the designation of a posture state from the user to
acquire the designated posture and acquire designated parts
corresponding to the designated posture.

Then, in step S4200, part region estimation section 140
acquires the estimated image data from monocular camera
200 through image data acquisition section 130. The esti-
mated image data may be still image data forming video data
that is captured continuously in real time by monocular cam-
era 200, and may be image data captured and stored in
advance.
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In step S4300, part region estimation section 140 then
performs a process of estimating the positions and orientation
of reference parts (hereinafter referred to as “reference part
estimation process™).

An example of the details of the reference part estimation
process will be described. Broadly speaking, the reference
part estimation process includes a first process of estimating
the shoulder joint positions of a person, and a second process
of estimating the orientation of the torso of a person.

The first process of estimating the shoulder joint positions
of a person will be described first.

Part region estimation section 140 detects an omega shape
from the estimated image data, and estimates shoulder joint
positions based on the omega shape.

FIG. 5 is a diagram illustrating an omega shape.

An omega (£2) shape is a characteristic edge shape of a
region that encompasses the head and shoulders of a person,
and is a shape having a high probability that, with regard to
the human body, imaging would be carried out most stably
when a surveillance camera or the like is used. Further, the
positions of the head and shoulders relative to the torso of a
person vary little. Accordingly, part region estimation section
140 first detects an omega shape to detect the positions of the
head and shoulders of a person. Part region estimation section
140 then estimates part regions for other parts relative thereto,
thus accurately estimating part regions.

An omega shape may be detected using a detector created
with Real AdaBoost and/or the like using a sufficient number
of sample images, for example. Examples of feature values
used for the detector may include histogram of gradient
(HtoG) feature values, Sparse feature values, Haar feature
values, and/or the like. Besides boosting algorithms, other
learning algorithms such as support vector machines (SVMs),
neural networks, and/or the like may also be employed.

Part region estimation section 140 first detects omega
shape 421 from image 420 of the estimated image data. Of the
pixels in omega region 422, the pixels forming omega shape
421 (the pixels at the edge portion) are of a digital signal of
“1,” while the rest of the pixels are of a digital signal of “0.” A
relatively small rectangular region encompassing omega
shape 421 is determined to be omega region 422. The base of
omega region 422 is referred to as reference line 423.

Part region estimation section 140 eliminates noise con-
tained in omega region 422. Specifically, of the pixels in
omega region 422, part region estimation section 140 deems
any digital signal of “1” that is present within the region
enclosed by omega shape 421 to be noise and corrects it to a
digital signal of “0.” This correction may be done by perform-
ing a so-called closing process, for example. A closing pro-
cess is a process that enlarges or reduces an image region by
a predetermined number of pixels or by a predetermined
proportion. Through this correction, the accuracy of the dis-
tance histogram discussed hereinafter may be improved.

Part region estimation section 140 obtains the perpendicu-
lar distance from reference line 423 to omega shape 421 at
various positions along reference line 423.

FIG. 6 is a diagram illustrating perpendicular distances
from reference line 423 to omega shape 421.

As shown in FIG. 6, part region estimation section 140
treats the direction of reference line 423 as the X-axis, and the
direction perpendicular to reference line 423 as the Y-axis.
Part region estimation section 140 takes the pixel count from
the left end of reference line 423 to be the X-coordinate, for
example. Part region estimation section 140 acquires, as per-
pendicular distance d(X), the pixel count in the Y-axis direc-
tion from reference line 423 to the pixel forming omega shape
421, that is, the perpendicular distance to omega shape 421.
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By “the pixel forming omega shape 421,” what is meant, for
example, is the pixel closest to reference line 423 among
pixels with a digital signal of “1.”

Part region estimation section 140 generates a distance
histogram where n items of perpendicular distance d(X) data
are mapped to X-coordinates (where n is a positive integer).

FIG. 8 is a diagram showing an example of a distance
histogram generated by part region estimation section 140
based on omega region 422 shown in FIG. 5.

As shown in FIG. 8, inan X-Y coordinate system where the
Y-axis represents perpendicular distance d(X), part region
estimation section 140 generates distance histogram 430 rep-
resenting a distribution of perpendicular distance d(X). Dis-
tance histogram 430 is so shaped that it rises in a shape
corresponding to the shoulders, and at some point protrudes
over a range corresponding to the center portion of the head.

By applying predetermined threshold Th, part region esti-
mation section 140 performs thresholding on distance histo-
gram 430 thus generated. Specifically, part region estimation
section 140 replaces the Y-coordinates at the X-coordinates
where perpendicular distance d(X) is equal to or greater than
threshold Th with “1,” and the Y-coordinates at the X-coor-
dinates where perpendicular distance d(X) is less than thresh-
old Th with “0.” The value of threshold Th is so set that, in
omega region 422, it would likely be greater than perpendicu-
lar distance d(X) of the upper ends of the shoulders, but less
than perpendicular distance d(X) ofthe upper end of the head.
The thresholding process is by no means limited to that above,
and other methods may also be employed, one example being
what is known as Otsu’s thresholding (Otsu’s method).

FIG. 8 is an example of results obtained by thresholding
distance histogram 430 shown in FIG. 7.

As shown in FIG. 8, range 441 of value “1” indicates the
range of X-coordinates of the image region of the center
portion of the head (hereinafter referred to as “head region”).
Overall range 442 containing range 441 of value “1” indicates
the range of X-coordinates of the image region of the shoul-
ders (hereinafter referred to as “shoulder region™). Accord-
ingly, from image 420 of the estimated image data, partregion
estimation section 140 extracts the X-axis direction range of
omega region 422 as the X-axis direction range of the shoul-
der region, and the X-axis direction range of range 441 of
value “1” as the X-axis direction range of the head region.

Based on the extracted shoulder region and head region,
part region estimation section 140 computes various param-
eters indicating the positions and orientations of the reference
parts.

FIG. 9 is a diagram illustrating various parameters repre-
senting the reference parts.

As shown in FIG. 9, it is assumed that part region estima-
tion section 140 uses H(xh, yh), RSE(x_rse), RD(x_rd),
RS(x_rs, y_rs), RSU(y_rsu), and LS as symbols indicating
the positions of the reference parts (the contents of the paren-
theses indicate parameters for an X-Y coordinate system). H
is the geometric center position of the head. RSE is the posi-
tion of an end portion of the right shoulder. RD is the distance
in the X-axis direction from the geometric center of the head
to the end portion of the right shoulder. RS is the position of
the right shoulder joint (hereinafter referred to as “right
shoulder position™). RSU is the position of the apex of the
right shoulder. LS is the position of the left shoulder joint
(hereinafter referred to as “left shoulder position™).

Part region estimation section 140 computes each param-
eter value as follows, for example.

First, based on whether or not (the torso of) the person is
facing monocular camera 200, part region estimation section
140 determines the right shoulder region from among the
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shoulder region extracted based on the results of threshold-
ing. Part region estimation section 140 determines whether or
not the person is facing monocular camera 200 based on
whether or not the skin colored components among the color
information in the head region are at or above a predetermined
threshold. For the case at hand, it is assumed that the person
is facing monocular camera 200, and that the shoulder region
on the left side of the image has been determined to be the
right shoulder region.

Part region estimation section 140 next computes the geo-
metric center position of the right shoulder region as right
shoulder position RS(x_rs, y_rs). Part region estimation sec-
tion 140 may also compute geometric center position H(xh,
yh) of the head, and compute right shoulder position RS(x_rs,
y_rs) using the distance between geometric center position
H(xh, yh) and original omega shape 421 in the Y-axis direc-
tion (hereinafter referred to as “head height Ah™). Specifi-
cally, part region estimation section 140 may take a value,
which is of a pre-defined ratio to head height Ah, as distance
(xh—x_rs) from geometric center position H of the head to
right shoulder position RS in the X-axis direction, for
example. Part region estimation section 140 may also take a
position that is lower than shoulder height by half the value of
head height Ah, i.e., by Ah/2, to be the Y-coordinate of right
shoulder position RS, i.e., y_rs, for example.

Furthermore, part region estimation section 140 computes,
as position RSE(x_rse) of the end portion of the right shoul-
der, a point at which the edge gradient of omega shape 421
(i.e. the rate of change of the distance histogram) exceeds a
threshold. Part region estimation section 140 computes dis-
tance RD(x_rd) in the X-axis direction between geometric
center position H of the head and position RSE of the end
portion of the right shoulder.

Finally, part region estimation section 140 estimates right
shoulder position RS to be located at a position that is 80% of
distance RD from geometric center position HI of the head in
the X-axis direction. Specifically, part region estimation sec-
tion 140 computes X-coordinate x_rs of right shoulder posi-
tion RS as x_rs=x_rse+0.2xRD. Part region estimation sec-
tion 140 computes, as position RSU(y_rsu) of the apex of the
right shoulder, the point of intersection between a straight
perpendicular line that passes through right shoulder position
RS (a straight line parallel to the Y-axis) and the edge of
omega shape 421. Part region estimation section 140 com-
putes Y-coordinate y_rs of right shoulder position RS as
y_rs=y_rsu-0.2xRD.

Part region estimation section 140 carries out similar com-
putations with respect to left shoulder position LS as well.
The computation methods for the various parameters are by
no means limited to the examples provided above.

The second process of estimating the orientation of the
torso of a person will be described.

Part region estimation section 140 pre-stores a reference
part correspondence table. The reference part correspon-
dence table is a table that maps combinations of geometric
center position H of the head, right shoulder position RS, and
left shoulder position LS (hereinafter referred to as “positions
of the reference parts™) to the respective body orientations
that can be estimated from the positions of the reference parts
(hereinafter referred to as “orientations of the reference
parts”). In other words, the reference part correspondence
table is a table that defines relative positional relationships of
various parts. The term “reference parts” refers to the omega-
shaped portion indicating the head and shoulders of a person
as discussed above. Accordingly, the orientation of the refer-
ence parts is the orientation of the body (torso) of a person.
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Part region estimation section 140 derives from the refer-
ence part correspondence table the orientation of the refer-
ence parts corresponding to the positions of the reference
parts computed bused on the estimated image data.

It is preferable that the positions of the reference parts
included in the stored reference part correspondence table, as
well as the positions of the reference parts computed by part
region estimation section 140 based on the estimated image
data be normalized values independent of the size of the
person on the screen. Specifically, part region estimation
section 140 derives the orientation of the reference parts using
values normalized in such a manner that, with geometric
center position H of the head as the origin, the distance
between geometric center position H of the head and right
shoulder position RS or left shoulder position LS would be 1,
for example.

The reference part correspondence table may also include
right shoulder position RS and left shoulder position LS. The
reference part correspondence table may also include the
angle formed between a line passing through geometric cen-
ter position H of the head and right shoulder position RS or
left shoulder position LS and a straight perpendicular line
passing through geometric center position H of the head
(hereinafter referred to as “head perpendicular line”). The
reference part correspondence table may also include the
distance between geometric center position H of the head and
left shoulder position LS relative to the distance between
geometric center position H of the head and right shoulder
position RS, where the latter distance is defined as being 1.
Part region estimation section 140 derives the orientation of
the reference parts by computing parameters corresponding
to the parameters included in the reference part correspon-
dence table.

FIG. 10 is a diagram showing example contents of a refer-
ence part correspondence table.

As shown in FIG. 10, reference part correspondence table
450 includes projection angle 452, coordinates 453 of left
shoulder position LS, coordinates 454 of geometric center
position H of the head, and reference part orientation 455,
which are mapped to identifier 451. The various coordinates
are expressed using a predetermined two-dimensional coor-
dinate system parallel to the two-dimensional coordinate sys-
tem of'the screen, where right shoulder position RS is taken to
be the origin, for example. Projection angle 452 is the angle of
this predetermined two-dimensional coordinate system rela-
tive to the X-Z plane of three-dimensional coordinate system
410 described in connection with FIG. 2 (i.e., installation
angle 0 shown in FIG. 2), for example. Reference part orien-
tation 455 is expressed as rotation angles relative to the X-, Y-,
and Z-axes of three-dimensional coordinate system 410
described in connection with FIG. 2, for example.

Part region estimation section 140 thus estimates the posi-
tions and orientation of the reference parts. This concludes
this description of a reference part estimation process.

Next, in step S4400 in FIG. 4, part region estimation sec-
tion 140 performs a process of estimating a part region for
each designated part (hereinafter referred to as “part region
estimation process”) based on the estimated positions and
orientation of the reference parts.

An example of the details of the part region estimation
process will be described.

Part region estimation section 140 pre-stores a part region
correspondence table. The part region correspondence table
is a table that maps the positions and orientation of the refer-
ence parts to part regions of other parts.

Part region estimation section 140 derives from the part
region correspondence table a part region of a designated part
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corresponding to the positions and orientation of the refer-
ence parts estimated from the estimated image data.

Part regions may be defined in terms of pixel positions in
the image of the estimated image data, for example. Accord-
ingly, with respect to all pixels in the entire image of the
estimated image data, part region estimation section 140
determines which designated part’s part region each pixel
belongs to.

FIG. 11 is a diagram showing example contents of a part
region correspondence table.

As shown in FIG. 11, part region correspondence table 460
includes head-shoulder region (reference parts) position 463,
head-shoulder region (reference parts) orientation 464, and
region 465 of each part, which are mapped to identifier 461.
Each position and region is represented by values of a two-
dimensional coordinate system for the image, for example.
Projection angle 462 is the angle of this predetermined two-
dimensional coordinate system relative to the X-Z plane of
three-dimensional coordinate system 410 described in con-
nection with FIG. 2 (i.e., installation angle 8 shown in FIG. 2),
for example. Head-shoulder region position 463 is right
shoulder position RS, for example. Head-shoulder region
orientation 464 is expressed as rotation angles relative to the
X-, Y-, and Z-axes of three-dimensional coordinate system
410 described in connection with FIG. 2, for example. If
identifier 461 is the same as identifier 451 in reference part
correspondence table 450, head-shoulder region orientation
464 does not necessarily have to be included in part region
correspondence table 460. Region 465 of each part is
expressed in terms of the center coordinates and radius of a
circle, assuming that the region can be approximated by a
circle, for example.

Part region estimation section 140 does not necessarily
have to use part region correspondence table 460 at the time of
obtaining part regions. For example, on the basis of the ori-
entations of reference parts derived from reference part cor-
respondence table 450 (see FIG. 10), part region estimation
section 140 may dynamically compute each part region using
various other pieces of body constraint information, for
example, in order of increasing distance from the reference
parts. The body constraint information is information con-
taining constraint conditions regarding the position of each
part.

Part region estimation section 140 then outputs as part
region data to likelihood map generation section 150, with
respect to all pixels of the entire image of the estimated image
data, information indicating whether or not each pixel is a part
region for a designated part.

The part region data may have a structure where there is
laid out, for example, pixel information Kij indicating, with
respect to all pixel positions (i, j) in the estimated image data,
whether or not there is a corresponding part region of a
designated part. Each element in pixel information Kij may,
for example, assume a value of “1” if it belongs to a part
region of a corresponding designated part, or “0” if not. For
pixel information Kij, there are as many dimensions as there
are designated parts, for example, as in Kij—[k1, k2]. In this
case, k1 may correspond to the part region of the right upper
arm, and k2 to the part region of the right forearm.

By way of example, if part region estimation section 140
determines that some pixel position Kab is included in the
part region of the right upper arm but not in the part region of
the right forearm, pixel information Kab=[1, 0] is generated.
Part region estimation section 140 generates as part region
data the thus generated set of pixel information for each pixel.

How part regions are to be represented by part region data
is by no means limited to the example provided above. By
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way of example, part region data may indicate, for each part
region pre-defined in the image, which designated part’s part
region it corresponds to, or it may indicate, for each desig-
nated part, the coordinates of the perimeter of the part region.

If normalized reference part positions are to be used in the
reference part estimation process, it is preferable that the part
region correspondence table include a part region corre-
sponding to the normalized reference parts. As in the case of
the reference part correspondence table discussed herein-
above, part region data may also include other information
such as right shoulder position RS, left shoulder position LS,
and/or the like. Part region estimation section 140 derives the
part region of each designated part by computing parameters
corresponding to the parameters included in the part region
correspondence table.

FIG. 12 is a diagram showing example contents of part
region data. For purposes of convenience, the position of each
part with respect to a case of an upright standing state is also
shown in the drawing.

As shown in FIG. 12, the part region data indicates, with
respect to image 420 of the estimated image data, part region
471 of the right upper arm which is a designated part, and part
region 472 of the right forearm which is a designated part.
These part regions 471 and 472 are estimated with reference
to the already estimated positions and orientation of reference
parts 473 as mentioned above.

Part region estimation section 140 thus estimates the part
region of each designated part. This concludes this descrip-
tion of a part region estimation process.

Next, in step S4500 in FIG. 4, likelihood map generation
section 150 performs a process of computing a likelihood
value with respect to the part region of each designated part
and thus generating an estimated likelihood map (hereinafter
referred to as “estimated likelihood map generation pro-
cess”).

An example of the details of an estimated likelithood map
generation process will be described.

Likelihood map generation section 150 first identifies,
from the estimated image data and for each pixel within the
part region of each designated part, image features suited for
representing the position and orientation states of the desig-
nated part, and computes a likelihood value indicating the
likelihood that the designated part is located thereat. Likeli-
hood map generation section 150 then generates an estimated
likelihood map indicating a distribution of likelihood values
for the pixels using the likelihood values computed from the
estimated image data. The likelihood values may be values
normalized to fall within the range of 0 to 1, as well as real
numbers including positive integers and negative numbers.

For the method of recognizing an object of interest within
the image, one may employ a technique involving: creating
strong classifiers by combining the sums of a plurality of
weak classifiers based on rectangular information through
AdaBoost; combining the strong classifiers in a cascade; and
recognizing a face as an object of interest within the image,
for example. For the image features, scale-invariant feature
transform (SIFT) features may be employed (e.g., see NPL 2),
for example. SIFT features are configured with 128-dimen-
sional vectors, and are values that are computed for each
pixel. Because SIFT features are unaffected by scale changes,
rotation, or translation of the object to be detected, they are
particularly effective for detecting parts that are rotatable in
various directions, e.g., the arms. In other words, SIFT fea-
tures are suited for the present embodiment which defines
posture states through the relative joint positions and angles
of two or more parts of interest.
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When a method using SIFT features is applied to the
present embodiment, strong classifiers Hk (where k=1, 2) are
generated for each part region in advance through machine
learning, and stored in likelihood map generation section 150,
as in right upper arm (k=1), right forearm (k=2), and so forth.
Classifiers Hk are generated by an AdaBoost algorithm. In
other words, strong classifiers Hk are generated by: repeating
learning until it is made possible to determine, with the
desired level of accuracy, whether or not a plurality of training
images prepared in advance for each part are the right upper
arm and whether or not they are the right forearm; and con-
necting a plurality of weak classifiers in a cascade.

Upon computing an image feature for each designated part
and each pixel, likelihood map generation section 150 inputs
the image features to strong classifiers Hk, and computes the
sum of values obtained by multiplying the output of each
weak classifier forming the strong classifiers Hk by reliability
a pre-obtained for each weak classifier. Likelihood map gen-
eration section 150 then subtracts predetermined threshold
Th from the computed sum to compute likelihood value ck for
each designated part and each pixel. For the present case, c1
represents a likelihood value for the right upper arm, and c2 a
likelihood value for the right forearm.

Likelihood map generation section 150 expresses likeli-
hood values Cij of the respective pixels, where the likelihood
values of the respective designated parts are combined, as
Cij=[c1, c2]. Likelihood map generation section 150 then
outputs to posture state estimation section 160 as an estimated
likelihood map the likelihood values Cij of all the pixels in the
entire image.

For each pixel, likelihood map generation section 150
determines whether or not the pixel is included in any part
region. If it is included, a likelihood value is computed using
the classifier for that part, and if not, the likelihood value for
that part may be set to 0. In other words, likelihood map
generation section 150 may compute the products of deter-
minant (Kij) of pixel information outputted from part region
estimation section 140 and determinant (Cij) of likelihood
values of the respective pixels computed irrespective of the
part regions, and take the results thereof to be the final esti-
mated likelihood map.

FIG. 13 is a diagram showing an example of an estimated
likelihood map. Here, the likelihood values of just one des-
ignated part (e.g., the right upper arm) in an estimated likeli-
hood map are shown, where pixels with higher likelihood
values are shown with darker shadings. As shown in FIG. 13,
estimated likelihood map 478 represents a distribution of
likelihoods regarding designated part presence.

With respect to the information for each pixel in the like-
lihood map, for example, the likelihood value for part k is
denoted by ck, where, if there are n designated parts, the data
structure would be such that likelihood vector Cij=cl,
c2...,¢ck...,cn].

Likelihood map generation section 150 thus generates an
estimated likelihood map. This concludes this description of
an estimated likelihood map generation process.

Next, in step S4600, posture state estimation section 160
acquires a learned likelihood map corresponding to the des-
ignated posture from posture state management section 110.
Then, posture state estimation section 160 performs a match
level determination process in which whether or not the esti-
mated likelihood map matches with the learned likelihood
map is determined on the basis of whether or not the level of
match therebetween is equal to a predetermined level or
greater.

An example of the details of the match level determination
process will be described.
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Posture state estimation section 160 first performs thresh-
olding on the estimated likelihood map and the learned like-
lihood map using their respective predetermined thresholds.
Specifically, posture state estimation section 160 converts the
likelihood value of each pixel and each designated part to a
digital signal of “1” if the likelihood value is equal to or
greater than the predetermined threshold, or to a digital signal
of “0” if the likelihood value is less than the predetermined
threshold.

FIG. 14 shows an example of a post-thresholding state of
the estimated likelihood map shown in FIG. 13. Here, pixels
with a digital signal of “1” are shown in grey, and pixels with
a digital signal of “0” are shown in white. As shown in FIG.
14, thresholded estimated likelihood map 479 represents a
distribution of portions where the designated part is likely to
be located.

Then, posture state estimation section 160 computes the
products of the thresholded likelihood values for each pixel
and each designated part between the estimated likelihood
map and the learned likelihood map, and takes the sum of the
values for all pixels and all designated parts to be an evalua-
tion value. Specifically, posture state estimation section 160
overlays the estimated likelihood map and the learned likeli-
hood map on top of each other in a predetermined positional
relationship, multiplies their thresholded likelihood value
information for each pixel and computes the sum of the prod-
ucts for all pixels and all designated parts.

Posture state estimation section 160 shifts the positional
relationship for overlaying the estimated likelihood map and
the learned likelihood map through translation and rotation,
and performs the above-mentioned computation processes
for each positional relationship. Then, posture state estima-
tion section 160 acquires the largest value among the com-
puted evaluation values and takes it to be the final evaluation
value representing the level of match. If this evaluation value
is equal to or greater than a predetermined threshold, posture
state estimation section 160 determines that the estimated
likelihood map matches with the learned likelihood map. The
threshold is pre-set to an appropriate value through learning
and/or the like.

Posture state estimation section 160 does not necessarily
have to perform thresholding on the estimated likelihood map
and the learned likelihood map. In this case, posture state
estimation section 160 can more accurately determine the
level of match between the learned likelihood map and the
estimated likelihood map. If thresholding is performed, how-
ever, posture state estimation section 160 can determine the
level of match quickly.

Posture state estimation section 160 thus determines the
level of match between the estimated likelihood map and the
learned likelihood map. This concludes this description of the
match level determination process.

If the estimated likelihood map matches with the learned
likelihood map (S4600: YES), posture state estimation sec-
tion 160 proceeds to step S4700. If the estimated likelihood
map does not match with the learned likelihood map (S4600:
NO), posture state estimation section 160 proceeds to step
S4800.

In step S4700, posture state estimation section 160 informs
the user of the estimation result that the posture of the person
in the target image data is the designated posture, through
information output apparatus 300, and returns to the process
in FIG. 3.

In step S4800, posture state estimation section 160 informs
the user of the estimation result that the posture of the person
in the target image data is not the designated posture, through
information output apparatus 300, and returns to the process
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in FIG. 3. Note that, in the case where the posture state cannot
be determined for, for example, the reason that no one is
detected from the target image data, posture state estimation
section 160 may inform the user of the estimation result
accordingly.

Note that the user can be informed of the estimation result
in step S4700 or S4800 through the presence or absence of
output or a difference in output contents of character display,
image display, voice output, vibration output, and the like.

Through such an operation, posture state estimation appa-
ratus 100 estimates part regions, and thus can generate the
estimated likelihood map indicating a distribution of the like-
lihood of each designated part. Then, posture state estimation
apparatus 100 compares the generated estimated likelihood
map with the learned likelihood map associated with the
designated posture, and thus can perform posture state esti-
mation.

FIG. 15 each show an example of the case where it is
determined to be a designated posture.

As shown in FIG. 15A, it is assumed that, in training image
480, parts of the entire body of person 481 are designated in
association with a posture state of an “upright posture” with
straight arms, legs, and back. In this case, part region 482 as
the comparison target ranges to cover the entire body.

As shown in FIG. 158, it is then assumed that, in an esti-
mation phase, an “upright posture” is designated to estimated
image 490. In this case, parts of the entire body of person 491
are designated parts, and part region 492 as the comparison
target ranges to cover the entire body. The learned likelihood
map of part region 482 based on training image 480 shown in
FIG. 15A matches with the estimated likelihood map of part
region 492 based on estimated image 490 if these maps are
relatively translated and rotated. Accordingly, posture state
estimation apparatus 100 can determine that the person in
training image 480 is in the posture state of the “upright
position.”

FIG. 16 each show another example of the case where it is
determined to be the designated posture.

As shown in FIG. 16A, it is assumed that, in training image
480, the right upper arm and the right forearm of person 481
are designated in association with a posture state where “the
right arm is bent.” In this case, part region 482 as the com-
parison target ranges to cover the right upper arm and the right
forearm.

As shown in FIGS. 16B to 16E, it is then assumed that, in
an estimation phase, “the right arm is bent” is designated to
each estimated image 490. In this case, the right upper arm
and the right forearm of person 491 are designated parts, and
part region 492 as the comparison target ranges to cover the
right upper arm and the right forearm. The learned likelihood
map of part region 482 based on training image 480 shown in
FIG. 16 A matches with the estimated likelihood map of part
region 492 based on each estimated image 490 if these maps
are relatively translated and rotated. Accordingly, posture
state estimation apparatus 100 can determine that the person
in training image 480 is in the posture state where “the right
arm is bent.”

The outline of person 491 in estimated image 490 in each of
FIG. 16B to FIG. 16E is significantly different from the
outline of person 481 in training image 480 in FIG. 16A.
Accordingly, the related art described above determines that
the person in estimated image 490 in each of FIG. 16B to F1G.
16FE is not in the posture state where “the right arm is bent.” In
contrast, as described above, posture state estimation appa-
ratus 100 according to the present embodiment can accurately
perform posture state estimation.
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Even if the postures of parts other than the right arm are
different as in FIG. 16B to FIG. 16E, posture state estimation
apparatus 100 according to the present embodiment can
determine that the person in the target image data is in the
posture state where “the right arm is bent.” That is, posture
state estimation apparatus 100 can extract postures for which
only the designated parts are focused on, regardless of the
postures of the other parts.

As described above, because posture state estimation appa-
ratus 100 according to the present embodiment uses the like-
lihood map indicating a distribution of the likelihood of each
part, the posture state of the person can be accurately esti-
mated. Further, because posture state estimation apparatus
100 estimates part regions and generates the estimated like-
lihood map where the likelihood value is set low for regions
other than the part regions, the accuracy of the likelihood map
can be improved, and posture state estimation can be further
accurately performed.

Note that, in Embodiment 1 described above, posture state
estimation apparatus 100 estimates only a given posture state
that is specifically designated, but may estimate which of a
plurality of posture states matches. In this case, for example,
posture state estimation apparatus 100 may treat all posture
states whose corresponding learned likelihood map is stored
in posture state management section 110, as the designated
postures. Further, in the case where an instruction to perform
posture state estimation is given with no posture state being
designated, posture state estimation apparatus 100 may treat
all posture states as the designated postures.

The image data used for posture state estimation may also
be data of images captured by a stereo camera or a plurality of
cameras. When using image data of a stereo camera, posture
state estimation apparatus 100 may use image data captured
by one of the cameras and position information of the subject
as derived from the installation parameters of the stereo cam-
era. Further, when using image data of a plurality of cameras,
posture state estimation apparatus 100 may use image data
captured by one of those cameras and position information of
the subject as derived from the installation parameters of each
camera.

If the positions and orientations of the reference parts are
known or designated, part region estimation section 140 need
not perform the above-mentioned reference part estimation
process. If, for example, the direction in which a person walks
is fixed and the orientations of the reference parts are gener-
ally uniform, part region estimation section 140 may hold
body orientation information.

The part region estimation method performed by part
region estimation section 140 is by no means limited to the
examples provided above. By way of example, part region
estimation section 140 may extract edge portions (hereinafter
simply referred to as “edges”) of an image from the estimated
image data, and estimate each part region on the basis of the
range of Y-coordinate values in the region enclosed by the
edges. Specifically, for example, part region estimation sec-
tion 140 may estimate, in the region enclosed by the edges,
20% of the region starting from the position where the Y-co-
ordinate value is greatest to be a part region for the head.
Similarly, for example, part region estimation section 140
may estimate the region from 15% to 65% to be a part region
for the torso, the region from 55% to 85% to be a part region
for the thighs, and the region from 75% to 100% to be a part
region for the crura.

If the estimated image data is still image data forming
video data, part region estimation section 140 may extract a
moving body by computing background differences between
images, and take an entire region including the extracted
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region to be a part region candidate for each part. This expe-
dites processing in estimating part regions.

Posture state estimation apparatus 100 may estimate the
part region of each part of interest by repeating a process
where part positions are estimated one by one in order of
increasing distance from the reference parts and where the
part region of the next part is estimated on the basis of the
estimated position.

In the case where a learned likelihood map is associated
with information regarding the optical axis direction of the
image serving as the basis of the learned likelihood map,
posture state estimation section 160 may make comparisons
using the learned likelihood map corresponding to installa-
tion angle 8 of monocular camera 200.

Posture state estimation apparatus 100 does not necessarily
have to perform part region estimation. In this case, likeli-
hood map generation section 150 computes likelihood values
uniformly for all regions in the image.

The type of likelihood maps treated by posture state esti-
mation apparatus 100 is by no means limited to likelihood
maps generated according to the examples provided above.
For example, the estimated likelihood map and the learned
likelihood map may be generated by extracting parallel lines
from the edges.

In this case, likelihood map generation section 150 stores
in advance, for example, a correspondence table in which
shoulder joint lengths and standard thickness values for vari-
ous parts are associated with each other. Likelihood map
generation section 150 searches a part region for a pair of
parallel lines spaced apart by a distance corresponding to the
standard thickness for that part while rotating the direction of
determination by 360°. Likelihood map generation section
150 repeats a process where, if there is a matching parallel
line pair, a vote is cast for each pixel in the region enclosed by
those parallel lines, and generates an estimated likelihood
map based on the final number of votes for each pixel.

With such a method, the estimated likelihood map and the
learned likelihood maps would include, for each pixel and
each designated part, directions of parallel lines and numbers
of votes (hereinafter referred to as “directional likelihood
values”). By way of example, assuming that parallel line
angles are divided into eight categories, the likelihood value
of each pixel and each designated part would assume an
eight-dimensional value corresponding to those eight direc-
tions. By way of example, further assuming that parallel line
widths are divided into two categories, the likelihood value of
each pixel and each designated part would assume a sixteen-
dimensional (2x8=16) value. The parallel line distance or
angle to be voted on may vary from part to part. By computing
a plurality of parallel line widths and using the likelihood
value of the width with the highest likelihood value, likeli-
hood may be computed while absorbing differences in body
type and clothing.

Likelihood map generation section 150 then determines,
for each designated part, that the direction with the highest
directional likelihood value is the main edge direction for that
designated part, for example. In so doing, posture state esti-
mation section 160 may compute the sum oflikelihood values
for all pixels for each direction, and determine the direction
with the highest sum to be the direction with the highest
directional likelihood value.

For each designated part, posture state estimation section
160 overlays the estimated likelihood map and a learned
likelihood map on top of each other in such a manner that key
edge directions coincide therebetween, and computes the
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level of match. Subsequent processes are similar to those in
the method that has been described in the present embodi-
ment.

A method that thus takes edge directions into account
makes it possible to place constraints on the positional rela-
tionship for overlaying the estimated likelihood map and a
learned likelihood map on top of each other, thereby enabling
a reduction in processing load.

In computing the level of match between the estimated
likelihood map and a learned likelihood map, only the edge
direction information may also be used. In this case, for
example, posture state estimation section 160 takes the level
of match with respect to angles formed between edge direc-
tions of a plurality of specified parts to be an evaluation value
representing the level of match between the estimated likeli-
hood map and a learned likelihood map. If the evaluation
value falls within a predetermined range, posture state esti-
mation section 160 determines that the posture of the person
in the target image data is the designated posture.

A method that thus determines level of match using edge
directions alone renders unnecessary the process of repeat-
edly computing a plurality of evaluation values while rotating
the image, and is thus capable of further reducing the pro-
cessing load. This concludes this description of a second
example of a match level determination process.

Embodiment 2

Embodiment 2 of the present invention is an example in
which a posture state estimation apparatus also generates a
learned likelihood map. The posture state estimation appara-
tus according to the present embodiment performs a learning
phase process for learned likelihood map generation as well
as the estimation phase process for posture state estimation.

FIG. 17 is a block diagram showing a configuration
example of the posture state estimation apparatus according
to Embodiment 2 of the present invention, which corresponds
to FIG. 1 of Embodiment 1. Elements common to those in
FIG. 1 are denoted by the same reference signs, and descrip-
tion thereof is omitted.

As shown in FIG. 17, posture state estimation apparatus
100a according to the present embodiment includes likeli-
hood map generation section 150a different from that in
Embodiment 1.

Image data acquisition section 130 and part region estima-
tion section 140 according to the present embodiment per-
form processing similar to that performed on the estimated
image data, on image data received in a learning phase (here-
inafter referred to as “learned image data™), to thereby esti-
mate part regions.

Also in the learning phase, posture state designation sec-
tion 120 according to the present embodiment receives the
designation of a posture state and parts, and outputs the des-
ignated posture and the designated parts.

Also in the learning phase, likelihood map generation sec-
tion 150a performs processing similar to that performed on
the estimated image data, on the learned image data, to
thereby generate a likelihood map where the likelihood that
each designated part corresponding to the part region is
located thereat is set low. Likelihood map generation section
150a stores, as a learned likelihood map, the likelihood map
generated from the learned image data into posture state
management section 110 in association with the designated
posture and the designated part. Likelihood map generation
section 150a does not output the likelihood map generated
from the learned image data to posture state estimation sec-
tion 160.
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Posture state estimation apparatus 100a thus configured
receives the learned image data and the designation of the
posture state and the parts and thereby generates the learned
likelihood map, and can perform posture state estimation on
the target image data using the generated learned likelihood
map.

The operation of posture state estimation apparatus 100a
will be described.

FIG. 18 is a flowchart showing an operation example of
posture state estimation apparatus 100a, which corresponds
to FIG. 3 of Embodiment 1. Steps common to those in FIG. 3
are denoted by the same step numbers, and description
thereof is omitted.

First, in step S1000qa, part region estimation section 140
determines whether or not an instruction for posture state
learning has been given. The posture state learning means
learned likelihood map generation. Part region estimation
section 140 determines that an instruction for posture state
learning has been given, for example, when posture state
designation section 120 receives the designation of a new
posture state or when image data acquisition section 130
receives new estimated image data, in the learning phase. The
switching between the learning phase and the estimation
phase is made, for example, when a predetermined operation
is received from the user through an input apparatus (not
shown) such as a keyboard. If an instruction for posture state
learning has been given (S1000a: YES), part region estima-
tion section 140 proceeds to step S2000q. If an instruction for
posture state learning has not been given (S1000a: NO), part
region estimation section 140 proceeds to the processing
from steps S3000 to S5000 described in Embodiment 1.

In step S2000q, posture state estimation apparatus 100
performs the learning phase process for posture state learn-
ing, and proceeds to the processing from steps S3000 to
S5000 described in Embodiment 1.

FIG. 19 is a flowchart showing an example of the learning
phase process (step S2000q in FIG. 18).

In step S2100a, posture state designation section 120
receives the designation of a posture state from the user to
acquire the designated posture and acquire designated parts
corresponding to the designated posture. Note that designated
parts corresponding to the designated posture need to be
acquired from the outside at least once. Posture state desig-
nation section 120 may store sets of a designated posture and
designated parts, automatically determine designated parts
on the basis of a designated posture from the second time, and
omit the reception of part designation.

Then, in step S2200aq, part region estimation section 140
acquires the learned image data from monocular camera 200
through image data acquisition section 130. The learned
image data may be still image data forming video data that is
captured continuously in real time by monocular camera 200,
and may be image data captured and stored in advance. The
learned image data may also be not image data obtained by
capturing an actual person but image data created using com-
puter graphics (CG) software on a computer. In particular,
image data created using motion capture software is capable
of simultaneous acquisition of three-dimensional posture
information of a person, and thus can improve the conve-
nience in learned likelihood map generation.

Then, in step S2300aq, part region estimation section 140
performs processing similar to the reference part estimation
process described in Embodiment 1, on the learned image
data, to thereby estimate reference parts.

Then, in step S2400aq, part region estimation section 140
performs processing similar to the part region estimation
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process described in Embodiment 1, on the learned image
data, to thereby estimate a part region for each designated
part.

Then, in step S2500q, likelihood map generation section
150a performs processing similar to the estimated likelihood
map generation process described in Embodiment 1, on the
learned image data, to thereby compute the likelihood value
of the part region for each designated part and generate the
learned likelihood map.

Then, in step S2600q, likelihood map generation section
150a stores the generated learned likelihood map into posture
state management section 110 in association with the desig-
nated parts and the designated posture, and returns to the
process in FIG. 18.

Note that, in the case where the same posture state is
designated to a plurality of pieces of learned image data, that
is, in the case where a plurality of learned likelihood maps
with the same designated posture exist, likelithood map gen-
eration section 150a may store a learned likelihood map made
of'an average value of likelihood values in posture state man-
agement section 110.

Through the operation described above, posture state esti-
mation apparatus 100a can receive the learned image data and
the designation of the posture state and the parts, thereby
generate and store the learned likelihood map. As a result, the
learned likelihood map is generated on the basis of, for
example, part region 482 shown in FIG. 16A of Embodiment
1, and is stored in association with the posture state where
“the right arm is bent” and the parts of the “right upper arm”
and the “right forearm.”

As described above, because posture state estimation appa-
ratus 100a according to the present embodiment generates the
learned likelihood map indicating a distribution of the likeli-
hood of each part for each posture state, and uses the gener-
ated learned likelihood map, the posture state of the person
can be accurately estimated.

For example, as described in Embodiment 1, the related art
described above determines that the person in estimated
image 490 in each of F1G. 161 to F1G. 16E is not in the posture
state where “the right arm is bent.” In order to prevent the
related art from making such a determination, it is necessary
to prepare training images for all the outlines shown in FIG.
16B to FIG. 16E and generate learned likelihood maps. Such
exhaustive learning requires time and effort. Further, as the
number of stored learned likelihood maps increases, the
determination of a level of match also requires a longer time.
In contrast, with the use of posture state estimation apparatus
100a according to the present embodiment, learning on train-
ing image 480 shown in FIG. 16A is sufficient as described
above, so that an increase in the number of learned likelihood
maps can be limited.

It is assumed that, in the case of using an estimated likeli-
hood map generated according to another method, such as the
estimated likelihood map based on the edge direction as
described in Embodiment 1, posture state estimation appara-
tus 1004 generates a learned likelihood map according to the
corresponding method.

The present invention is not limited to the application of
posture state estimation of a person described in Embodiment
1 and Embodiment 2. The present invention can also be
applied to estimation of the posture states of various objects
(such as a robot) having a plurality of parts articulated by
joints.

An example of performing posture estimation using an
irregularity map will be described as Embodiment 3 of the
present invention. The irregularity map here refers to a map in
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which the surface of the subject projected in the image is
divided according to its irregularities.

Embodiment 3

FIG. 20 is a block diagram showing a main part configu-
ration of a posture state estimation apparatus according to
Embodiment 3 of the present invention, which corresponds to
posture state estimation apparatus 100 in FIG. 1 of Embodi-
ment 1. Note that, in FIG. 20, configuration elements com-
mon to those in FIG. 1 are denoted by the same reference
signs as those in FIG. 1, and description thereof is omitted.

In addition to the configuration in FIG. 1, posture state
estimation apparatus 1005 in FIG. 20 further includes irregu-
larity map estimation section 1454.

Irregularity map estimation section 1455 generates an
irregularity map of each part. More specifically, irregularity
map estimation section 1455 receives the estimated likeli-
hood map and the estimated image data from likelihood map
generation section 150. Then, irregularity map estimation
section 1455 generates the irregularity map on the basis of the
received information, and outputs the generated irregularity
map to posture state estimation section 1605. Details of the
method of generating the irregularity map will be described
later. The irregularity map generated from the estimated
image data is hereinafter referred to as “estimated irregularity
map.”

In addition to the learned likelihood map, posture state
estimation section 1605 holds in advance, for each posture
state, an irregularity map learned from the reference model in
that posture state (hereinafter referred to as “learned irregu-
larity map”). Then, posture state estimation section 1605
estimates the posture state of the subject on the basis of the
level of match between the estimated irregularity map and the
learned irregularity map as well as the level of match between
the estimated likelihood map and the learned likelihood map.
That is, in addition to the operation of Embodiment 1, posture
state estimation section 1606 further performs matching
between the estimated irregularity map and the learned
irregularity map.

The irregularity map will first be described.

Irregularity map estimation section 1455 estimates the ori-
entation of the surface of a part from brightness information
of the part in the image. The brightness here refers to, for
example, the level of luminance, and the brightness informa-
tion here refers to information indicating luminance or the
level of luminance.

FIG. 21 illustrate the relation between the posture of a
person and the brightness of each part.

A first posture shown in FIG. 21A and a second posture
shown in FIG. 21B are different from each other, but it is
assumed that the first and second postures have the same
silhouette as viewed from the front as shown in FIG. 21C. In
this case, it is not possible to correctly estimate whether the
posture of the target person is the first posture or the second
posture, only from region information defined by edges of the
front image.

For example, it is understood, from the silhouette shown in
FIG. 21C, that the length of the right arm is smaller than the
length of the left arm, and hence it can be inferred that the
right elbow is highly likely to be bent. There are, however, a
variety of bending forms that satisfy the body constraint. As
shown in FIG. 21A and FIG. 21B, there are also a variety of
angles of the entire right arm.

For example, it is understood, from the silhouette shown in
FIG. 21C, that the length of the left leg is smaller than the
length of the left arm, and hence it can be inferred that the left
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knee is likely to be bent. There may be, however, cases as
shown in FIG. 21A and FIG. 21B where the left knee is bent
and where the left knee is straight.

Ifthe border positions (in other words, the joints) between
the upper arm and the forearm and between the thigh and the
crus can be estimated, it is possible to estimate which of the
variety of postures described above the target person has.
Unfortunately, in the case of such a posture as shown in FI1G.
21C where the arms and the legs look straight, it is difficult to
estimate these border positions even using the body con-
straint, only from the region information defined by edges.

In view of the above, in order to deal with such a posture
whose joint position (border of respective parts) cannot be
identified only from the region information, posture state
estimation apparatus 1005 estimates the part region using the
brightness information as well as the region information.

FIG. 21D shows, using color density, the brightness of each
part in the first posture as taken from the front when natural
light from the above is a light source. FIG. 21E shows, using
color density, the brightness of each part in the second posture
as taken from the front when natural light from the above is a
light source. In these figures, a higher color density means a
lower brightness (darker). Further, it is assumed that five
levels of “-2, -1, 0, 1,2” are defined as the brightness in order
from the darkest level. The level “0” is, for example, a level of
brightness of a surface perpendicular to the ground.

Thelevel of brightness of each region of the image is higher
for a region having a surface that faces more upward, and is
lower for a region having a surface that faces more downward.

For example, as shown in FIG. 21D and FIG. 21E, for both
the first and second postures, the regions of the head, the
torso, and the left arm are in the level “0,” and the region of the
right leg is in the level “~1,” which is slightly darker.

Inthe first posture, the right upper arm extends perpendicu-
larly downward, and the right forearm extends frontward.
Hence, as shown in FIG. 21D, the region of the right upper
arm is in the level “0,” and the region of the right forearm is in
the level “2.” In comparison, in the second posture, the right
upper arm is drawn back, and the right forearm extends down-
ward. Hence, as shown in FIG. 21E, the region of the right
upper arm is in the level “~2,” and the region of the right
forearm is in the level <0

In the first posture, the entire left leg extends frontward.
Hence, as shown in FIG. 21D, the regions of the left thigh and
the left crus are in the level “1.” In comparison, in the second
posture, the left thigh is moved upward, and the left crus
extends backward. Hence, as shown in FIG. 21E, the region of
the left thigh is in the level “2,” and the region of the left crus
is in the level “-2

In this way, each part can be considered as a surface having
the same brightness. Accordingly, from the brightness infor-
mation of the part in the image, the position of the part can be
estimated.

Next, operations of posture state estimation apparatus 1005
configured as described above will be described with refer-
ence to a processing flow of FIG. 22. Note that, in FIG. 22,
steps common to those in FIG. 4 of Embodiment 1 are
denoted by the same step numbers as those in FIG. 4, and
description thereof is omitted.

Upon the generation of the estimated likelihood map
(S4500), the processing proceeds to S45104.

In S45105, irregularity map estimation section 1455 per-
forms an estimated irregularity map generation process. The
estimated irregularity map generation process is a process of
generating the estimated irregularity map from the estimated
image data acquired in S4200 and the estimated likelihood
map generated in S4500.
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FIG. 23 shows a processing flow of the irregularity map
generation process (step S45105 in FIG. 22).

In pixel-based information of the estimated irregularity
mayp, for example, the likelihood of part k is expressed by pk.
In the case where n parts exist, the pixel-based information
has a data structure of irregularity vector Ojj [pl, p2, . . .,
pk, . . ., pn]. pk is binary information, and the value of pk
takes, for example, any of 0 indicating that there is no possi-
bility of the partk and 1 indicating that there is a possibility of
the part k.

In S61005, irregularity map estimation section 1455
selects one part as the processing target. For example, if the
right arm is the target of the irregularity map generation
process, irregularity map estimation section 1455 first selects
the right forearm farthest from the core part.

Then, in S62005, irregularity map estimation section 1455
acquires the region (hereinafter referred to as “part likelihood
region”) of the part selected in S61005, from the estimated
likelihood map generated in S4500. Here, irregularity map
estimation section 145a extracts pixels whose likelihood of
the right forearm in the estimated likelihood map exceeds a
predetermined threshold, and takes the extracted pixels to be
the part likelihood region of the right forearm.

Then, in S63005, irregularity map estimation section 1455
extracts the brightness information of the part likelihood
region extracted in S62004, from the estimated image data
acquired in S4200, The brightness information can be
extracted by, for example, extracting only the luminance
(pixel brightness) from the RGB value of each pixel forming
the estimated image data and thus obtaining a grayscale
image.

Then, in S64005, irregularity map estimation section 1455
groups the brightness information of the part likelihood
region obtained in S63005, with the use of a brightness
threshold. The brightness threshold used by irregularity map
estimation section 1455 may be a fixed value set in advance,
and may be dynamically set. An example method of dynami-
cally setting the threshold will be described below.

FIG. 24 illustrates a method for area classification using the
body constraint of the right forearm. For ease of description,
it is assumed that the torso has only the right arm.

In step S4300 in FIG. 22, for example, with estimated right
shoulder position 5005 as the reference, the head/shoulder
region and torso region 5015 connected thereto are estimated.
In this case, the region in which the right upper arm and the
right forearm can exist is as indicated by region 50254, and the
region in which only the right forearm can exist is as indicated
by region 5035. Regions 5024 and 5035 can be computed
from, for example, the part region correspondence table
shown in FIG. 11.

Irregularity map estimation section 1455 first extracts the
luminance value (brightness information) of pixels existing in
region 5035, from this region 5035 in which only the right
forearm can exist, of the part likelihood region of the right
forearm.

Then, assuming that a % of total number m of the target
pixels is n, irregularity map estimation section 1455 excludes
n pieces in order from the smallest one and n pieces in order
from the largest one, from the extracted luminance value data.
Further, irregularity map estimation section 1455 takes the
smallest value and the largest value of the data after the
exclusion of these 2n pieces of data (the number of pieces of
data is m—2n) to be the threshold of the brightness informa-
tion of the right forearm (the upper limit and the lower limit of
the range of the luminance value regarded as the right fore-
arm). Note that a is a value set in advance.
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Then, for example, irregularity map estimation section
14556 sets a value (for example, 1) indicating that there is a
possibility of the right forearm, to a value indicating the right
forearm, of irregularity vector Oij of pixels that fall within
this threshold (that is, fall within the range of the luminance
value regarded as the right forearm), in the part likelihood
region of the right forearm.

In this way, irregularity map estimation section 1455 sets
the threshold of the luminance value using only the brightness
information of the part likelihood region in which only the
right forearm exists according to the body constraint. As a
result, irregularity map estimation section 1455 can identify
the pixels having the brightness information of the right fore-
arm without an influence of other parts.

Next, irregularity map estimation section 1455 extracts the
luminance value (brightness information) of pixels from
region 5025 in which only the right upper arm and the right
forearm can exist, of the part likelihood region of the right
forearm.

Then, irregularity map estimation section 14556 deletes data
that falls within the threshold of the brightness information of
the right forearm obtained in the previous step, from the
extracted luminance value data. Then, assuming that b % of
total number p of remaining pieces of the luminance value
data is q, irregularity map estimation section 1455 excludes q
pieces in order from the smallest one and q pieces in order
from the largest one, from the extracted luminance value data.
Further, irregularity map estimation section 1455 takes the
smallest value and the largest value of the data after the
exclusion of these 2q pieces of data (the number of pieces of
data is p—2q) to be the threshold of the brightness information
of' the right upper arm (the upper limit and the lower limit of
the range of the luminance value regarded as the right upper
arm). Note that b is a value set in advance.

Then, for example, irregularity map estimation section
14556 sets a value (for example, 1) indicating that there is a
possibility of the right upper arm, to a value indicating the
right upper arm, of irregularity vector Oij of pixels that fall
within this threshold (that is, fall within the range of the
luminance value regarded as the right upper arm), in the part
likelihood region of the right forearm.

In this way, irregularity map estimation section 1454
excludes the data in the range of the luminance value regarded
as the right forearm, from the data of the brightness informa-
tion of the part likelihood region in which only the right upper
arm and the right forearm exist according to the body con-
straint, to thereby set the threshold. As a result, irregularity
map estimation section 1455 can identify the pixels having
the brightness information of the right upper arm without an
influence of other parts, and can accurately identify the pixels
having the brightness information of the right upper arm.

In this way, irregularity map estimation section 1455 sets
the threshold of the brightness information using the bright-
ness information of the region in which only the target part
exists, in order from parts farther from the core part, and
groups the brightness information of each part to estimate the
region.

Note that there may be a case where the part likelihood
region of the right forearm does not exist in region 5035 in
which only the right forearm can exist. In such a case, irregu-
larity map estimation section 1456 may perform, for
example, a process of: extracting the luminance information
of'pixels existing in region 5025 in which only the right upper
arm and the right forearm can exist, of the part likelihood
regions of the right forearm and the right upper arm; and
making a classification into two groups of the right forearm
and the right upper arm. Then, irregularity map estimation
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section 1455 sets the above-mentioned threshold using, for
example, Otsu’s thresholding. As a result, even in the case
where the part likelihood region of the right forearm does not
exist inregion 5035 in which only the right forearm can exist,
irregularity map estimation section 1455 can set the thresh-
olds of the brightness information of the right upper arm and
the right forearm.

There may be a case where, after the setting of the bright-
ness information of the right forearm for region 5035 in which
only the right forearm can exist, a threshold different from
that of the right forearm cannot be set because a pixel having
brightness information different from that of the right forearm
does not exist in spite of region 5024 in which only the right
upper arm and the right forearm can exist. In such a case,
irregularity map estimation section 1456 may set, for
example, the same value as that of the right forearm to the
brightness information of the right upper arm. As a result,
even in the case where the orientations of the surfaces of the
right upper arm and the right forearm are similar to each other
(where the right arm is straight), irregularity map estimation
section 1455 can set the brightness information of the right
upper arm.

In S65005 in FIG. 23, irregularity map estimation section
1455 determines whether or not all the parts as the targets of
the irregularity map generation process have been processed.
For example, in the case where the estimated irregularity map
is generated also for the left arm, irregularity map estimation
section 1455 returns to S61005, and performs processing
similar to that performed on the right arm, on the left arm.

Then, irregularity map estimation section 14556 outputs the
generated estimated irregularity map to posture state estima-
tion section 1604.

In 846006 in F1G. 22, posture state estimation section 1605
performs matching between the learned likelihood map and
the estimated likelihood map, and then performs matching
between the learned irregularity map and the estimated
irregularity map. Then, posture state estimation section 1605
determines whether or not the estimated likelihood map
matches with any learned likelihood map, similarly to
Embodiment 1.

More specifically, in the case where the value of the like-
lihood of the irregularity map is binary, posture stale estima-
tion section 1605 evaluates, for each pixel, the level of match
in likelihood between the estimated irregularity map and the
learned irregularity map. For example, posture state estima-
tion section 1605 counts, for every pixel, pixels having the
same 1D, and determines a learned irregularity map having
the largest count value, as a map having a high level of match
with the estimated irregularity map. Note that, similarly to the
likelihood map, in the case where the size is different, posture
state estimation section 1605 may first enlarge or reduce the
image region and then perform matching.

As described in FIG. 21, posture states having the same
learned likelihood map but different learned irregularity maps
can exist. Accordingly, more accurate posture state estima-
tion is possible by performing not only matching with the
learned likelihood map but also matching with the learned
irregularity map.

As described above, because posture state estimation appa-
ratus 1005 according to the present embodiment generates the
irregularity map and uses matching with the irregularity map
in combination, the accuracy of posture estimation can be
further improved.

Note that the present embodiment may be applied to pos-
ture state estimation apparatus 100a according to Embodi-
ment 2. That is, the learned irregularity map may be generated
similarly to the learned likelihood map generation.
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The disclosure of the specification, drawings, and abstract
included in Japanese Patent Application No. 2010-274673
filedon Dec. 9, 2010, is incorporated herein by reference in its
entirety.

INDUSTRIAL APPLICABILITY

A posture state estimation apparatus and a posture state
estimation method according to the present invention are
useful in that the apparatus and method are each capable of
accurately estimating the posture state of an object having
joints.

REFERENCE SIGNS LIST

100, 1004, 1005 Posture state estimation apparatus
110 Posture state management section

120 Posture state designation section

130 Image data acquisition section

140 Part region estimation section

1454 Irregularity map estimation section

150, 1504 Likelihood map generation section

160, 1605 Posture state estimation section

200 Monocular camera

300 Information output apparatus

The invention claimed is:

1. A posture state estimation apparatus that estimates a
posture state of a person on a basis of image data obtained by
capturing the person, the person being an object including a
plurality of parts articulated by joints, the posture state esti-
mation apparatus comprising:

a part region estimation section that detects positions of a
head and shoulders of the person from the image data,
and estimates a range of motion of each of at least two of
the plurality of parts in the image data as a part region of
each part on a basis of the detected positions;

a likelihood map generation section that calculates, for
each pixel or each group of pixels in the part region
corresponding to each of at least the two parts, a likeli-
hood value indicating likelihood that the part is located
thereat by determining an image feature of the pixel or
the group of pixels from the image data, and generates,
for each of at least the two parts, a likelihood map indi-
cating a distribution of the calculated likelihood values;
and

a posture state estimation section that estimates, ifa level of
match between a learned likelihood map and an esti-
mated likelihood map is high, the posture state associ-
ated with the learned likelihood map as the posture state
of the person, the learned likelihood map being the like-
lihood map associated in advance with the posture state,
the estimated likelihood map being the likelithood map
generated on the basis of the image data, wherein

the likelihood map generation section generates the likeli-
hood map on a basis of parallel lines in the image data,
and

the posture state estimation section computes the level of
match using a main edge direction of the estimated like-
lihood map acquired from the parallel lines and a main
edge direction of the learned likelihood map.

2. The posture state estimation apparatus according to

claim 1, wherein

the likelihood map generation section generates the esti-
mated likelihood map where, for regions other than the
part region, the likelihood that each part corresponding
to the part region is located thereat is set low.
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3. The posture state estimation apparatus according to
claim 1, further comprising a posture state designation sec-
tion that receives designation of the posture state as the esti-
mation target, wherein

the posture state estimation section reports an estimation

result that the posture state of the person is the desig-
nated posture state, if the level of match between the
learned likelihood map associated with the posture state
designated as the estimation target and the estimated
likelihood map is high.

4. The posture state estimation apparatus according to
claim 3, wherein

the posture state designation section receives an instruction

to generate the learned likelihood map and designation
of the posture state as the generation target,

the likelihood map generation section generates the

learned likelihood map on a basis of a predetermined
image if the instruction to generate the learned likeli-
hood map is given, and

the posture state estimation apparatus further comprises a

posture state management section that stores the gener-
ated learned likelihood map in association with the des-
ignated posture state.

5. The posture state estimation apparatus according to
claim 1, further comprising an irregularity map estimation
section that generates an irregularity map in which a surface
of'a subject in an image of the image data is divided according
to irregularities thereof, wherein the posture state estimation
section estimates the posture state of the person on a basis of
a level of match between a learned irregularity map that is the
irregularity map associated in advance with the posture state
and an estimated likelihood map that is the irregularity map
generated on the basis of the image data.

6. A posture state estimation method that estimates a pos-
ture state of a person on a basis of image data obtained by
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capturing the person, the person being an object including a
plurality of parts articulated by joints, the method compris-
ing:
detecting, by a part region estimation section, positions of
ahead and shoulders of the person from the image data,
and estimating a range of motion of each of at least two
of the plurality of parts in the image data as a part region
of each part on a basis of the detected positions;
calculating, by a likelihood map generation section, for
each pixel or each group of pixels in the part region
corresponding to each of at least the two parts, a likeli-
hood value indicating likelihood that the part is located
thereat by determining an image feature of the pixel or
the group of pixels from the image data;
generating, by the likelihood map generation section, for
each of at least the two parts, a likelihood map indicating
a distribution of the calculated likelihood values; and
estimating, by a posture state estimation section, if a level
of match between a learned likelihood map and an esti-
mated likelihood map is high, the posture state associ-
ated with the learned likelihood map as the posture state
of the person, the learned likelihood map being the like-
lihood map associated in advance with the posture state,
the estimated likelihood map being the likelithood map
generated on the basis of the image data, wherein
the generating by the likelihood map generation section
generates the likelihood map on a basis of parallel lines
in the image data, and
the estimating by the posture state estimation section com-
putes the level of match using a main edge direction of
the estimated likelihood map acquired from the parallel
lines and a main edge direction of the learned likelihood
map.



